ESc 101: FUNDAMENTALS OF COMPUTING

Lecture 28

Mar 18, 2010

LECTURE 28 () ESc 101



OUTLINE

@ HanDLING FILES

LECTURE 28 () ESc 101



GENERATING MANY Bi¢ NUMBERS

o C compiler comes with many predefined functions.

@ These functions are collected in a library referred as standard library.

LECTURE 28 () ESc 101 MaAR 18, 2010 3/ 14



GENERATING MANY Bi¢ NUMBERS

o C compiler comes with many predefined functions.

@ These functions are collected in a library referred as standard library.

@ One of the functions is rand ().

LECTURE 28 () ESc 101 MAaR 18, 2010 3/14



GENERATING MANY Bi¢ NUMBERS

C compiler comes with many predefined functions.
@ These functions are collected in a library referred as standard library.
@ One of the functions is rand ().

e This function generates a random number between 0 and RAND_MAX.

LECTURE 28 () ESc 101 MAaR 18, 2010 3/14



GENERATING MANY Bi¢ NUMBERS

C compiler comes with many predefined functions.

@ These functions are collected in a library referred as standard library.
@ One of the functions is rand ().

e This function generates a random number between 0 and RAND_MAX.

o To generate k numbers, we call this function k times.

LECTURE 28 () ESc 101 MAR 18, 2010 3/14



STORING THE NUMBERS IN A FILE

@ When there is a large amount of data to be read or written, it is
easier to do this through a file.

LECTURE 28 () ESc 101 MaAR 18, 2010 4/ 14



STORING THE NUMBERS IN A FILE

@ When there is a large amount of data to be read or written, it is
easier to do this through a file.

o C provides a very simple way of working with files.

LECTURE 28 () ESc 101 MAaR 18, 2010 4/ 14



STORING THE NUMBERS IN A FILE

@ When there is a large amount of data to be read or written, it is
easier to do this through a file.

o C provides a very simple way of working with files.

@ To access a file, it first needs to be opened:
fopen(<filename>, <mode>)
opens the file <filename> for <mode> type of operations.

LECTURE 28 () ESc 101 MAaR 18, 2010 4/ 14



STORING THE NUMBERS IN A FILE

@ When there is a large amount of data to be read or written, it is
easier to do this through a file.

o C provides a very simple way of working with files.

@ To access a file, it first needs to be opened:
fopen(<filename>, <mode>)
opens the file <filename> for <mode> type of operations.

e <filename> is a string, representing the name of the file.

LECTURE 28 () ESc 101 MAR 18, 2010 4/ 14



STORING THE NUMBERS IN A FILE

@ When there is a large amount of data to be read or written, it is
easier to do this through a file.

o C provides a very simple way of working with files.

@ To access a file, it first needs to be opened:
fopen(<filename>, <mode>)
opens the file <filename> for <mode> type of operations.

e <filename> is a string, representing the name of the file.

@ <mode> is also a string, representing what we wish to do with the file.

LECTURE 28 () ESc 101 MAR 18, 2010 4/ 14



TYPES OF <mode>

<mode> can be:

LECTURE 28 () ESc 101



TYPES OF <mode>

<mode> can be:

e "r": for reading from a file. If <filename> does not exist, results in
error.

LECTURE 28 () ESc 101 MaAR 18, 2010 5/14



TYPES OF <mode>

<mode> can be:

e "r": for reading from a file. If <filename> does not exist, results in
error.

e "w": for writing to a file. If <filename> does not exist, it is created.
If it exists, its contents are deleted.

LECTURE 28 () ESc 101 MAaR 18, 2010 5/14



TYPES OF <mode>

<mode> can be:

e "r": for reading from a file. If <filename> does not exist, results in
error.

e "w": for writing to a file. If <filename> does not exist, it is created.
If it exists, its contents are deleted.

@ "a": for appending to a file. If <filename> does not exist, it is
created. If it exists, its contents are retained.

LECTURE 28 () ESc 101 MAR 18, 2010 5/14



TYPES OF <mode>

<mode> can be:

e "r": for reading from a file. If <filename> does not exist, results in
error.

e "w": for writing to a file. If <filename> does not exist, it is created.
If it exists, its contents are deleted.

@ "a": for appending to a file. If <filename> does not exist, it is
created. If it exists, its contents are retained.

There are more types of <mode> but we will not consider them in this
course.

LECTURE 28 () ESc 101 MAR 18, 2010 5/14



RETURN VALUE OF fopen()

e fopen() returns a pointer to the file.

LECTURE 28 () ESc 101



RETURN VALUE OF fopen()

e fopen() returns a pointer to the file.
@ It is defined to be of type FILE *.

LECTURE 28 () ESc 101



RETURN VALUE OF fopen()

e fopen() returns a pointer to the file.
@ It is defined to be of type FILE *.

o If there is an error, then the return value is NULL.

LECTURE 28 () ESc 101 MaARr 18, 2010 6 /14



READING AND WRITING

@ We can use fprintf () and fscanf () to read from and write to a
file after opening it.

LECTURE 28 () ESc 101 MaAR 18, 2010 7/ 14



READING AND WRITING

@ We can use fprintf () and fscanf () to read from and write to a
file after opening it.

@ The only change is that there is an additional argument: the file
pointer.

LECTURE 28 () ESc 101 MAaR 18, 2010 7/ 14



READING AND WRITING

@ We can use fprintf () and fscanf () to read from and write to a
file after opening it.

@ The only change is that there is an additional argument: the file
pointer.

@ The syntax is:
fprintf(fp, <format string>, arg-1, arg-2, ...)

LECTURE 28 () ESc 101 MAaR 18, 2010 7/ 14



READING AND WRITING

@ We can use fprintf () and fscanf () to read from and write to a
file after opening it.

@ The only change is that there is an additional argument: the file
pointer.

@ The syntax is:
fprintf(fp, <format string>, arg-1, arg-2, ...)

@ Of course, fprintf () can only be used for files opened in "w" or "a"
modes.

o And fscanf () can only be used for files opened in "r" mode.

LECTURE 28 () ESc 101 MAaR 18, 2010 7/ 14



CLoOSING A FILE

e The function call
fclose(fp)
closes the file whose file pointer is fp.

LECTURE 28 () ESc 101



CLoOSING A FILE

e The function call
fclose(fp)
closes the file whose file pointer is fp.

o Every opened file should be closed in the program when its use is
finished.

LECTURE 28 () ESc 101 MAR 18, 2010 8/ 14



CHECKING END OF FILE

@ The function
feof (fp)
is useful to check if, while reading, the end of file is reached.

LECTURE 28 () ESc 101 MaAR 18, 2010 9 /14



CHECKING END oOF FILE

@ The function
feof (fp)
is useful to check if, while reading, the end of file is reached.

@ The file pointer fp points to a certain location of the file.

@ When we read from or write to the file, the data is read from or
written to respectively the location pointed by fp.

e fp is then advanced to the next location of the file.

LECTURE 28 () ESc 101 MAR 18, 2010 9/14



CHECKING END oOF FILE

@ The function
feof (fp)
is useful to check if, while reading, the end of file is reached.

@ The file pointer fp points to a certain location of the file.

@ When we read from or write to the file, the data is read from or
written to respectively the location pointed by fp.

e fp is then advanced to the next location of the file.

@ feof (fp) returns a non-zero value if fp points to the end of the file.
Else it returns 0.

LECTURE 28 () ESc 101 MAR 18, 2010 9/ 14



sprintf () AND sscanf ()

@ The functions sprintf () and sscanf () work with strings.

LECTURE 28 () ESc 101



sprintf () AND sscanf ()

@ The functions sprintf () and sscanf () work with strings.

@ The format for sprintf () is:
sprintf(<string>, <format string>, arg-1, arg-2, ...).

@ The output is written to the <string> in the form of a string.

LECTURE 28 () ESc 101 MaAR 18, 2010 10 / 14



sprintf () AND sscanf ()

@ The functions sprintf () and sscanf () work with strings.

@ The format for sprintf () is:
sprintf(<string>, <format string>, arg-1, arg-2, ...).

The output is written to the <string> in the form of a string.

Similarly, sscanf () reads input from a string.

LECTURE 28 () ESc 101 MaR 18, 2010 10 / 14



OUTLINE

© CoMMAND LINE ARGUMENTS

LECTURE 28 () ESc 101



PASSING <filename> AS ARGUMENT

o We may wish to create multiple files containing sequences of numbers.

LECTURE 28 () ESc 101 MAR 18, 2010 12 / 14



PASSING <filename> AS ARGUMENT

o We may wish to create multiple files containing sequences of numbers.

o For this, the program can accept <filename> as input.

LECTURE 28 () ESc 101 MaAR 18, 2010 12 / 14



PASSING <filename> AS ARGUMENT

o We may wish to create multiple files containing sequences of numbers.
o For this, the program can accept <filename> as input.

@ It can also be done, in Linux at least, using the input redirection:
seq > <filename>.

LECTURE 28 () ESc 101 MaAR 18, 2010 12 / 14



PASSING <filename> AS ARGUMENT

o We may wish to create multiple files containing sequences of numbers.
o For this, the program can accept <filename> as input.

@ It can also be done, in Linux at least, using the input redirection:
seq > <filename>.

@ There is another alternative: by providing the <filename> as a
command line argument to the program: seq <filename>.

LECTURE 28 () ESc 101 MaR 18, 2010 12 / 14



PASSING <filename> AS ARGUMENT

o We may wish to create multiple files containing sequences of numbers.
o For this, the program can accept <filename> as input.

@ It can also be done, in Linux at least, using the input redirection:
seq > <filename>.

@ There is another alternative: by providing the <filename> as a
command line argument to the program: seq <filename>.

@ This simplifies typing, as well as provides freedom to specify multiple
input and output files.

LECTURE 28 () ESc 101 MaR 18, 2010 12 / 14



USING main() TO ACCEPT ARGUMENTS

@ When command line arguments are expected in a program, its
main() function is written with parameters.

LECTURE 28 () ESc 101 MAR 18, 2010 13 / 14



UsING main() TO ACCEPT ARGUMENTS

@ When command line arguments are expected in a program, its
main() function is written with parameters.

@ The first one is an integer variable, storing the number of white-space
separated strings in the command:

LECTURE 28 () ESc 101 MAaR 18, 2010 13 / 14



UsING main() TO ACCEPT ARGUMENTS

@ When command line arguments are expected in a program, its
main() function is written with parameters.

@ The first one is an integer variable, storing the number of white-space
separated strings in the command:

» This also counts the name of the program as one string.

LECTURE 28 () ESc 101 MaAR 18, 2010 13 / 14



USING main() TO ACCEPT ARGUMENTS

@ When command line arguments are expected in a program, its
main() function is written with parameters.

@ The first one is an integer variable, storing the number of white-space
separated strings in the command:

» This also counts the name of the program as one string.

@ The second argument is an array of strings, storing all the strings in
the command.

LECTURE 28 () ESc 101 MaAR 18, 2010 13 / 14



EXAMPLE

int main(int argc, char *argv[])
{
for (int i = 0; i < argc, i++)
printf("%s\n", argv([i]);

LECTURE 28 () ESc 101

MAR 18, 2010

14 / 14



EXAMPLE

int main(int argc, char *argv[])
{
for (int i = 0; i < argc, i++)
printf("%s\n", argv([i]);

@ The above program is compiled and stored in file, say
test-command-line.

LECTURE 28 () ESc 101 MaR 18, 2010 14 / 14



EXAMPLE

int main(int argc, char *argv[])

{
for (int i = 0; i < argc, i++)
printf ("%s\n", argv[il);

@ The above program is compiled and stored in file, say
test-command-line.

e On typing test-command-line xyz 123 Ad4, the output will be:

LECTURE 28 () ESc 101 MaAR 18, 2010 14 / 14



EXAMPLE

int main(int argc, char *argv[])
{
for (int i = 0; i < argc, i++)
printf("%s\n", argv([i]);

@ The above program is compiled and stored in file, say,
test-command-line.

e On typing test-command-line xyz 123 Ad4, the output will be:

test-command-line
Xyz

123

Ad4

LECTURE 28 () ESc 101 MaR 18, 2010 14 / 14



	Handling Files
	Command Line Arguments

