
ESc 101: Fundamentals of Computing

Lecture 28

Mar 18, 2010

Lecture 28 () ESc 101 Mar 18, 2010 1 / 14



Outline

1 Handling Files

2 Command Line Arguments

Lecture 28 () ESc 101 Mar 18, 2010 2 / 14



Generating Many Big Numbers

C compiler comes with many predefined functions.

These functions are collected in a library referred as standard library.

One of the functions is rand().

This function generates a random number between 0 and RAND MAX.

To generate k numbers, we call this function k times.

Lecture 28 () ESc 101 Mar 18, 2010 3 / 14



Generating Many Big Numbers

C compiler comes with many predefined functions.

These functions are collected in a library referred as standard library.

One of the functions is rand().

This function generates a random number between 0 and RAND MAX.

To generate k numbers, we call this function k times.

Lecture 28 () ESc 101 Mar 18, 2010 3 / 14



Generating Many Big Numbers

C compiler comes with many predefined functions.

These functions are collected in a library referred as standard library.

One of the functions is rand().

This function generates a random number between 0 and RAND MAX.

To generate k numbers, we call this function k times.

Lecture 28 () ESc 101 Mar 18, 2010 3 / 14



Generating Many Big Numbers

C compiler comes with many predefined functions.

These functions are collected in a library referred as standard library.

One of the functions is rand().

This function generates a random number between 0 and RAND MAX.

To generate k numbers, we call this function k times.

Lecture 28 () ESc 101 Mar 18, 2010 3 / 14



Storing the Numbers in a File

When there is a large amount of data to be read or written, it is
easier to do this through a file.

C provides a very simple way of working with files.

To access a file, it first needs to be opened:
fopen(<filename>, <mode>)

opens the file <filename> for <mode> type of operations.

<filename> is a string, representing the name of the file.

<mode> is also a string, representing what we wish to do with the file.

Lecture 28 () ESc 101 Mar 18, 2010 4 / 14



Storing the Numbers in a File

When there is a large amount of data to be read or written, it is
easier to do this through a file.

C provides a very simple way of working with files.

To access a file, it first needs to be opened:
fopen(<filename>, <mode>)

opens the file <filename> for <mode> type of operations.

<filename> is a string, representing the name of the file.

<mode> is also a string, representing what we wish to do with the file.

Lecture 28 () ESc 101 Mar 18, 2010 4 / 14



Storing the Numbers in a File

When there is a large amount of data to be read or written, it is
easier to do this through a file.

C provides a very simple way of working with files.

To access a file, it first needs to be opened:
fopen(<filename>, <mode>)

opens the file <filename> for <mode> type of operations.

<filename> is a string, representing the name of the file.

<mode> is also a string, representing what we wish to do with the file.

Lecture 28 () ESc 101 Mar 18, 2010 4 / 14



Storing the Numbers in a File

When there is a large amount of data to be read or written, it is
easier to do this through a file.

C provides a very simple way of working with files.

To access a file, it first needs to be opened:
fopen(<filename>, <mode>)

opens the file <filename> for <mode> type of operations.

<filename> is a string, representing the name of the file.

<mode> is also a string, representing what we wish to do with the file.

Lecture 28 () ESc 101 Mar 18, 2010 4 / 14



Storing the Numbers in a File

When there is a large amount of data to be read or written, it is
easier to do this through a file.

C provides a very simple way of working with files.

To access a file, it first needs to be opened:
fopen(<filename>, <mode>)

opens the file <filename> for <mode> type of operations.

<filename> is a string, representing the name of the file.

<mode> is also a string, representing what we wish to do with the file.

Lecture 28 () ESc 101 Mar 18, 2010 4 / 14



Types of <mode>

<mode> can be:

"r": for reading from a file. If <filename> does not exist, results in
error.

"w": for writing to a file. If <filename> does not exist, it is created.
If it exists, its contents are deleted.

"a": for appending to a file. If <filename> does not exist, it is
created. If it exists, its contents are retained.

There are more types of <mode> but we will not consider them in this
course.

Lecture 28 () ESc 101 Mar 18, 2010 5 / 14



Types of <mode>

<mode> can be:

"r": for reading from a file. If <filename> does not exist, results in
error.

"w": for writing to a file. If <filename> does not exist, it is created.
If it exists, its contents are deleted.

"a": for appending to a file. If <filename> does not exist, it is
created. If it exists, its contents are retained.

There are more types of <mode> but we will not consider them in this
course.

Lecture 28 () ESc 101 Mar 18, 2010 5 / 14



Types of <mode>

<mode> can be:

"r": for reading from a file. If <filename> does not exist, results in
error.

"w": for writing to a file. If <filename> does not exist, it is created.
If it exists, its contents are deleted.

"a": for appending to a file. If <filename> does not exist, it is
created. If it exists, its contents are retained.

There are more types of <mode> but we will not consider them in this
course.

Lecture 28 () ESc 101 Mar 18, 2010 5 / 14



Types of <mode>

<mode> can be:

"r": for reading from a file. If <filename> does not exist, results in
error.

"w": for writing to a file. If <filename> does not exist, it is created.
If it exists, its contents are deleted.

"a": for appending to a file. If <filename> does not exist, it is
created. If it exists, its contents are retained.

There are more types of <mode> but we will not consider them in this
course.

Lecture 28 () ESc 101 Mar 18, 2010 5 / 14



Types of <mode>

<mode> can be:

"r": for reading from a file. If <filename> does not exist, results in
error.

"w": for writing to a file. If <filename> does not exist, it is created.
If it exists, its contents are deleted.

"a": for appending to a file. If <filename> does not exist, it is
created. If it exists, its contents are retained.

There are more types of <mode> but we will not consider them in this
course.

Lecture 28 () ESc 101 Mar 18, 2010 5 / 14



Return Value of fopen()

fopen() returns a pointer to the file.

It is defined to be of type FILE *.

If there is an error, then the return value is NULL.

Lecture 28 () ESc 101 Mar 18, 2010 6 / 14



Return Value of fopen()

fopen() returns a pointer to the file.

It is defined to be of type FILE *.

If there is an error, then the return value is NULL.

Lecture 28 () ESc 101 Mar 18, 2010 6 / 14



Return Value of fopen()

fopen() returns a pointer to the file.

It is defined to be of type FILE *.

If there is an error, then the return value is NULL.

Lecture 28 () ESc 101 Mar 18, 2010 6 / 14



Reading and Writing

We can use fprintf() and fscanf() to read from and write to a
file after opening it.

The only change is that there is an additional argument: the file
pointer.

The syntax is:
fprintf(fp, <format string>, arg-1, arg-2, ...)

Of course, fprintf() can only be used for files opened in "w" or "a"
modes.

And fscanf() can only be used for files opened in "r" mode.

Lecture 28 () ESc 101 Mar 18, 2010 7 / 14



Reading and Writing

We can use fprintf() and fscanf() to read from and write to a
file after opening it.

The only change is that there is an additional argument: the file
pointer.

The syntax is:
fprintf(fp, <format string>, arg-1, arg-2, ...)

Of course, fprintf() can only be used for files opened in "w" or "a"
modes.

And fscanf() can only be used for files opened in "r" mode.

Lecture 28 () ESc 101 Mar 18, 2010 7 / 14



Reading and Writing

We can use fprintf() and fscanf() to read from and write to a
file after opening it.

The only change is that there is an additional argument: the file
pointer.

The syntax is:
fprintf(fp, <format string>, arg-1, arg-2, ...)

Of course, fprintf() can only be used for files opened in "w" or "a"
modes.

And fscanf() can only be used for files opened in "r" mode.

Lecture 28 () ESc 101 Mar 18, 2010 7 / 14



Reading and Writing

We can use fprintf() and fscanf() to read from and write to a
file after opening it.

The only change is that there is an additional argument: the file
pointer.

The syntax is:
fprintf(fp, <format string>, arg-1, arg-2, ...)

Of course, fprintf() can only be used for files opened in "w" or "a"
modes.

And fscanf() can only be used for files opened in "r" mode.

Lecture 28 () ESc 101 Mar 18, 2010 7 / 14



Closing a File

The function call
fclose(fp)

closes the file whose file pointer is fp.

Every opened file should be closed in the program when its use is
finished.

Lecture 28 () ESc 101 Mar 18, 2010 8 / 14



Closing a File

The function call
fclose(fp)

closes the file whose file pointer is fp.

Every opened file should be closed in the program when its use is
finished.

Lecture 28 () ESc 101 Mar 18, 2010 8 / 14



Checking End of File

The function
feof(fp)

is useful to check if, while reading, the end of file is reached.

The file pointer fp points to a certain location of the file.

When we read from or write to the file, the data is read from or
written to respectively the location pointed by fp.

fp is then advanced to the next location of the file.

feof(fp) returns a non-zero value if fp points to the end of the file.
Else it returns 0.

Lecture 28 () ESc 101 Mar 18, 2010 9 / 14



Checking End of File

The function
feof(fp)

is useful to check if, while reading, the end of file is reached.

The file pointer fp points to a certain location of the file.

When we read from or write to the file, the data is read from or
written to respectively the location pointed by fp.

fp is then advanced to the next location of the file.

feof(fp) returns a non-zero value if fp points to the end of the file.
Else it returns 0.

Lecture 28 () ESc 101 Mar 18, 2010 9 / 14



Checking End of File

The function
feof(fp)

is useful to check if, while reading, the end of file is reached.

The file pointer fp points to a certain location of the file.

When we read from or write to the file, the data is read from or
written to respectively the location pointed by fp.

fp is then advanced to the next location of the file.

feof(fp) returns a non-zero value if fp points to the end of the file.
Else it returns 0.

Lecture 28 () ESc 101 Mar 18, 2010 9 / 14



sprintf() and sscanf()

The functions sprintf() and sscanf() work with strings.

The format for sprintf() is:
sprintf(<string>, <format string>, arg-1, arg-2, ...).

The output is written to the <string> in the form of a string.

Similarly, sscanf() reads input from a string.

Lecture 28 () ESc 101 Mar 18, 2010 10 / 14



sprintf() and sscanf()

The functions sprintf() and sscanf() work with strings.

The format for sprintf() is:
sprintf(<string>, <format string>, arg-1, arg-2, ...).

The output is written to the <string> in the form of a string.

Similarly, sscanf() reads input from a string.

Lecture 28 () ESc 101 Mar 18, 2010 10 / 14



sprintf() and sscanf()

The functions sprintf() and sscanf() work with strings.

The format for sprintf() is:
sprintf(<string>, <format string>, arg-1, arg-2, ...).

The output is written to the <string> in the form of a string.

Similarly, sscanf() reads input from a string.

Lecture 28 () ESc 101 Mar 18, 2010 10 / 14



Outline

1 Handling Files

2 Command Line Arguments

Lecture 28 () ESc 101 Mar 18, 2010 11 / 14



Passing <filename> as Argument

We may wish to create multiple files containing sequences of numbers.

For this, the program can accept <filename> as input.

It can also be done, in Linux at least, using the input redirection:
seq > <filename>.

There is another alternative: by providing the <filename> as a
command line argument to the program: seq <filename>.

This simplifies typing, as well as provides freedom to specify multiple
input and output files.

Lecture 28 () ESc 101 Mar 18, 2010 12 / 14



Passing <filename> as Argument

We may wish to create multiple files containing sequences of numbers.

For this, the program can accept <filename> as input.

It can also be done, in Linux at least, using the input redirection:
seq > <filename>.

There is another alternative: by providing the <filename> as a
command line argument to the program: seq <filename>.

This simplifies typing, as well as provides freedom to specify multiple
input and output files.

Lecture 28 () ESc 101 Mar 18, 2010 12 / 14



Passing <filename> as Argument

We may wish to create multiple files containing sequences of numbers.

For this, the program can accept <filename> as input.

It can also be done, in Linux at least, using the input redirection:
seq > <filename>.

There is another alternative: by providing the <filename> as a
command line argument to the program: seq <filename>.

This simplifies typing, as well as provides freedom to specify multiple
input and output files.

Lecture 28 () ESc 101 Mar 18, 2010 12 / 14



Passing <filename> as Argument

We may wish to create multiple files containing sequences of numbers.

For this, the program can accept <filename> as input.

It can also be done, in Linux at least, using the input redirection:
seq > <filename>.

There is another alternative: by providing the <filename> as a
command line argument to the program: seq <filename>.

This simplifies typing, as well as provides freedom to specify multiple
input and output files.

Lecture 28 () ESc 101 Mar 18, 2010 12 / 14



Passing <filename> as Argument

We may wish to create multiple files containing sequences of numbers.

For this, the program can accept <filename> as input.

It can also be done, in Linux at least, using the input redirection:
seq > <filename>.

There is another alternative: by providing the <filename> as a
command line argument to the program: seq <filename>.

This simplifies typing, as well as provides freedom to specify multiple
input and output files.

Lecture 28 () ESc 101 Mar 18, 2010 12 / 14



Using main() to Accept Arguments

When command line arguments are expected in a program, its
main() function is written with parameters.

The first one is an integer variable, storing the number of white-space
separated strings in the command:

I This also counts the name of the program as one string.

The second argument is an array of strings, storing all the strings in
the command.

Lecture 28 () ESc 101 Mar 18, 2010 13 / 14



Using main() to Accept Arguments

When command line arguments are expected in a program, its
main() function is written with parameters.

The first one is an integer variable, storing the number of white-space
separated strings in the command:

I This also counts the name of the program as one string.

The second argument is an array of strings, storing all the strings in
the command.

Lecture 28 () ESc 101 Mar 18, 2010 13 / 14



Using main() to Accept Arguments

When command line arguments are expected in a program, its
main() function is written with parameters.

The first one is an integer variable, storing the number of white-space
separated strings in the command:

I This also counts the name of the program as one string.

The second argument is an array of strings, storing all the strings in
the command.

Lecture 28 () ESc 101 Mar 18, 2010 13 / 14



Using main() to Accept Arguments

When command line arguments are expected in a program, its
main() function is written with parameters.

The first one is an integer variable, storing the number of white-space
separated strings in the command:

I This also counts the name of the program as one string.

The second argument is an array of strings, storing all the strings in
the command.

Lecture 28 () ESc 101 Mar 18, 2010 13 / 14



Example

int main(int argc, char *argv[])

{

for (int i = 0; i < argc, i++)

printf("%s\n", argv[i]);

}

The above program is compiled and stored in file, say,
test-command-line.

On typing test-command-line xyz 123 Ad4, the output will be:

test-command-line
xyz
123
Ad4

Lecture 28 () ESc 101 Mar 18, 2010 14 / 14



Example

int main(int argc, char *argv[])

{

for (int i = 0; i < argc, i++)

printf("%s\n", argv[i]);

}

The above program is compiled and stored in file, say,
test-command-line.

On typing test-command-line xyz 123 Ad4, the output will be:

test-command-line
xyz
123
Ad4

Lecture 28 () ESc 101 Mar 18, 2010 14 / 14



Example

int main(int argc, char *argv[])

{

for (int i = 0; i < argc, i++)

printf("%s\n", argv[i]);

}

The above program is compiled and stored in file, say,
test-command-line.

On typing test-command-line xyz 123 Ad4, the output will be:

test-command-line
xyz
123
Ad4

Lecture 28 () ESc 101 Mar 18, 2010 14 / 14



Example

int main(int argc, char *argv[])

{

for (int i = 0; i < argc, i++)

printf("%s\n", argv[i]);

}

The above program is compiled and stored in file, say,
test-command-line.

On typing test-command-line xyz 123 Ad4, the output will be:

test-command-line
xyz
123
Ad4

Lecture 28 () ESc 101 Mar 18, 2010 14 / 14


	Handling Files
	Command Line Arguments

